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Caustics in general relativity 11. The WKB approximation 
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Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge, CB3 9EW, UK 

Received 21 December 1976, in final form 31 January 1977 

Abstract. The first-order WKB approximation to solutions of Einstein’s equations near a 
conjugate point (with respect to a fixed space-like surface) is studied. It is found that the 
metric can be expressed interms of a generalized Airy function. The geometric meaning of 
the approximate solution is discussed and it is shown that it is completely characterized by 
the shear of the two null hypersurfaces defined at a conjugate point. Applications to the 
question of gravitational energy flux at a conjugate point are pointed out. 

1. Introduction 

One of the well known results of geometrical optics (see, for example, Landau and 
Lifshitz 1971) is the eikonal equation 

gPV4,&&4,v = 0 (1) 
for the phase 4 of the vector potential (or of the field itself). The null hypersurfaces 
c$ = constant form the electromagnetic wavefronts and the light rays are null geodesics 
orthogonal to these hypersurfaces. Thus at a focal point, where neighbouring light rays 
approach each other to first order, there exist several different wavefronts, or, the 
concept of a wavefront is not well defined at such points. This situation was studied by 
Airy (1838) almost 140 years ago and it was found (see Ludwig 1966) that near a focal 
point one has to replace the usual expression for the vector potential in geometrical 
optics which is 

A, = a,(x) exp(iwc$(xN (2) 
by the more complicated form 

A, = a,(x) e ~ p ( i w c $ ( x ) ) A ( - w ~ ’ ~ u ) + i w - ’ ’ ~ b , ( x )  e ~ p ( i w 4 ( x ) ) A ’ ( - w ~ ’ ~ u ) + O ( w - ~ )  
(3) 

where A is the Airy function (i.e., an everywhere regular solution of the differential 
equation dZ/dx2[F(x)] = xF(x) ,  A’ is the derivative of A, U is a smooth function on 
space-time and w is a positive parameter (the frequency of the electromagnetic 
radiation) which is supposed to be much larger than one. 

In the general theory of relativity one can study rapidly oscillating, approximate 
solutions of Einstein’s equations (Isaacson 1968, Choquet-Bruhat 1969, MacCallum 
and Taub 1973) which are the analogue of geometrical optics in Maxwell’s theory. One 
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assumes, similarly to equation (2), that the metric is of the form 

Let us recall how one arrives at  equation (4): we form the expression exp(iw4) where (b 
is the phase function of the geodesics. We suppose that the metric gpv(x ,  w )  can be 
developed in a power series in w-’ and we multiply all the w’dependent terms in this 
series by exp(iwq5). Consequently we get the following equation: 

where Re  denotes the real part. We demand that the tensors g(n) ,y (x )  will be real and 
we arrive at equation (4). As in electrodynamics one sees, upon substituting the metric 
(4) in the field equations, that the gravitational wavefront is a null hypersurface and the 
rays, null geodesics, are orthogonal to this hypersurface. Again, at conjugate points the 
approximation to the metric given by equation (4) is invalid because the phase function 
4 becomes singular there. It was rigorously shown by Landau and Lifshitz (1971) and 
by Hawking and Ellis (1973) (see also Boyer 1964) that Einstein’s equations imply the 
existence of conjugate points in the vicinity of matter. It follows that in order to be able 
to use the rapidly oscillating approximation of the metric near matter (and away from 
the singularities) we have to find the analogue of equation (3). In the present work we 
shall find this analogue and we shall construct the first-order WKB solution of Einstein’s 
equations near a conjugate point, paying special attention to the geometric meaning of 
the results. 

From the construction of the approximate metric (4) it is clear that at a conjugate 
point we have to replace the phase function 4 by another, non-singular function. To 
this end we shall use our results (Manor 1976, 1977) concerning the phase function of 
the geodesics at a conjugate point. Suppose that we are interested in the conjugate 
points formed by the geodesics originating perpendicularly from a fixed space-like 
surface. We have shown (Manor 1977) that in the vicinity of every point in space-time 
there exists an everywhere regular function q of four variables such that the following 
points are relevant. (i) The four variables of Y’ are chosen among the coordinates xcI of 
the geodesics and their momentapA in such a way that the Poisson brackets of any two of 
these variables vanish. (ii) Away from conjugate points the function .IIr reduces to the 
ordinary phase function (i.e., the Hamilton-Jacobi function of the geodesics) 4. (iii) If 
the four variables of P are x a ,  Pb((Y, b = 0, . . . , 3  where (Y takes those values which b 
does not take) then the other four coordinates of the conjugate point (in phase space) 
(x ,  p) are given by 

(iv) If the geodesics under consideration are time-like and the space-like surface to 
which they are orthogonal is three-dimensional then there exist coordinates ( x A ,  p,) 
near the conjugate point in which the function 9 takes the form 

Y ’ \ I I ( p ~ , x 1 , x z , x 3 ) = ~ ~ ~ - p , x ’ - p z x z - p , x 3  (7) 
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while if the geodesics are null and the space-like surface is two-dimensional the function 
9 takes the form 

where d(d = 1 , 2 )  is the multiplicity of the conjugate point, that is, the number of 
linearly independent Jacobi fields vanishing at this point. 

Using these results we shall construct, in 0 2, the analogue of the Airy function in 
general relativity. In 0 3 we shall find the first-order WKB solution of the field 
equations at a conjugate point, and in 0 4 we shall discuss the geometric meaning of the 
solution and its bearings upon the question of gravitational energy flux at a conjugate 
point. 

2. The Airy function in general relativity 

The immediate generalization of equation (4) to the case in which there is a conjugate 
point would be to use the new phase function 9 (given by equation (7) or (8)) instead of 
the classical function 4. But here we encounter two difficulties. ( a )  the function 9 
depends on the phase space coordinates. In particular, near a conjugate point it 
depends explicitly on the momenta p&. If we substituted q instead of q5 in equation (4) 
we would find that the right-hand side is p, dependent while the left-hand side is not. (b) 
the forms given in equations (7) and (8) refer to a particular coordinate system. 
Therefore, if we use them our results will be manifestly coordinate dependent whereas 
they should be covariant. 

Let us now show how we overcome the first difficulty. Let us first treat the case in 
which the projection of the phase space point (x ,  p )  on space-time is outside a vicinity of 
the conjugate points. As remarked in Manor (1977), we can then find coordinates 
( x A ,  p,) centred at (x ,  p )  in which 9 is linear in x and in p, that is, 

q ( x ,  p )  = - P A X A .  (9) 

We put 9, as given in equation (9), instead of q5 in equation ( 5 )  and we allow the tensors 
g(n) , y (x )  to be functions of the momenta pA.  We then obtain 

The fact that w p 1  appears only in integer powers in the right-hand side of equation (10) 
is inessential, and one can also consider expressions such as 

m 
i & V ( X ,  P, 0 )  = i ( O ) & ” ( X ,  p)+Re(exp(ioWx, P)) n = l  c oJ-n+6i(n)&v(x, p ) )  (1 1) 

where S is a fixed real number. It is easy to see (cf Manor 1977) that the mapping 
pA + P A  +h,A where h is a smooth function on space-time serves as a gauge transforma- 
tion. Under such transformations equation (9) takes the form 

q ( x ,  P ) = - p A X A  + { ( x ) *  (12) 
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Putting 9 as given in equation (12) into equation (11) we get 

&,(x,  p ,  U )  = &o),y(x, p ) +  Re[exp(ioJ(x)) exp(-iopAx"))w-"S~(l),,(x, ~ ) ] + O ( U - ~ ' ~ ) .  

Now we simply integrate equation (13) over the momentap". But we have to remember 
that expression (9) is valid only in a vicinity of the point ( x ,  p ) ,  that is, equation (13) is 
valid only in this neighbourhood and the overall averaging is therefore meaningless. In 
order to take care of this locality we multiply both sides of equation (13) by a smooth 
function ~ ( p )  which vanishes outside some neighbourhood of the origin. (Recall that 
the coordinate system (x" ,  p , )  is centred at ( x ,  p ) . )  Now we can integrate over the p ,  
(where each p ,  runs from --CO to +CO), divide by jx@) d4p and obtain 

(13) 

g,"(x, 0) = g(O),,(x) + Re( exp(iU~(x))U-'+6 j exp(-iwpAx")g(l),u(x, d4p) 

+O(U-2+6). (14) 
The integral in equation (14) is just the Fourier transform of the function 
g(l),v(~-lx, p ) , ~ ( p ) .  If we assume that this transform is real and that S = 0 then we shall 
re-establish equation (4) with J ( x )  instead of 4 ( x ) .  

The discussion beginning at equation (9) proposes a general way to overcome the 
difficulty due to the fact that the function 9 depends explicitly on the coordinates pA.  
(Difficulty ( a )  at the beginning of this section.) We simply have to average over all 
momenta p,, with a weight function ~ ( p )  satisfying rather mild demands. The solution 
of difficulty (b) ,  namely, the fact that expressions (7) and (8) are valid only in a particular 
coordinate system, is very natural. After the averagingover the momenta we replace all 
the coordinates x" by arbitrary functions of the coordinates (which is, in fact, nothing 
but a gauge transformation, cf Manor 1977). 

We shall exhibit this process for 9 ( x , p )  given by equation (8). By a simple 
coordinate transformation in the (x ,  p )  phase space we transform 9 to the form 

X3-d 3 (15) 9 ( x 0 , .  . . , ?P3-d+l, * * *  9P3)=ipOP:-d+lf*. .+ipOp:- tdpO-pAx" 
satisfying the equation 

Equation (15), which is easier to work with than equation (8), turns \Ir into one of the 
Thom's elementary catastrophes (see Manor 1977). For simplicity we shall treat the 
case d = 1 and for convenience we shall invert the sign of the coordinate x o .  As a result 
of averaging over the momenta, the metric takes the form 

gpu(x, U )  = go),,(x)+Re(o-'+6 e x p ( i ~ 4 ~ )  exp(-iop,x' -iop2x2) 

43(x, p )  =+pop: - t p : + p o x 0 - - p , X 3 .  (18) 
As in the example treated above we shall use the gauge transformation p A  +p, ,  + h," 
where this time h is a function of x 2  and x3 only, integrate over p1 and p 2  (i.e., Fourier 
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transform) and redefine the coordinates x 2  and x3  such that i2= w x 2  and i3 = wx3. In 
the new coordinates the metric (17) can be written as 

g&, w )  = g(o,,u(x) 

+Re(o-'+s exp(i@e(x)) exP(iw43)g(l)&v(x, PO, p3)X(pO, p3) dp0 dp3) 

+ O(w-2+s) (19) 

where @(x) is some smooth function of the coordinates x'. Now we choose 6 = 3. Recall 
that away from conjugate points we chose 6 = 0. For 8 of the form (8) (or (15)) we take 
6 = $ and for T of the form (7) we take 6 = 4. In other words, 36 is the number of 
'non-trivial' integrations on the variables pr.  Thus we see that the parameter S 
characterizes the point around which we build the WKB approximation to Einstein's 
equations. 

The function g( l ) ,u (x ,  po,  p3)~(po ,  p 3 )  is a smooth function of po, p3 vanishing outside 
some neighbourhood of the origin of the p,, coordinates. We can develop this function 
in a Taylor series around the origin, 

g(I)&Ly(x) PO, P3)X(pO, P3) 

= ~ , * ( x ) + P o ~ , u ( x ) + P 3 ~ , u ( x )  +P3&) +p0p3~cIu(x) +p:t&) + 0 ( p 3 ) .  
(20) 

We substitute (20) in (19) and perform the integration. In terms of the function 

2/3  0 2 / 3  3 where A is the Airy function, y = w x and z = w x , the metric can be written as 

gMU(x, w )  = g(oIIIu(x) +Re[exp(iwe(x)) ( w - ' r i , , ( x ) F + i ~ - ' ~ ~ ~ , , ( x ) -  aF 
ay  

Up to this point all the calculations, starting from equation (17), were performed in that 
coordinate system (x", p , )  in which the phase function 8 i s  given by equation (15). Now 
we can go over to arbitrary coordinates in space-time. Equation (22) will retain its form 
except that y and z will become arbitrary smooth functions of the coordinates. 

We thus overcame the two difficulties mentioned at the beginning of this section. 
Equation (22) is the form of the metric for the first-order WKB approximate solutions 
of Einstein's equations in a vicinity of a conjugate point of the type described by the 
phase function (1 5) .  

The function F(y, z ) ,  defined in equation (21) is the general relativistic analogue of 
the Airy function in electrodynamics, in case the geodesic phase function 8(x ,  p )  is 
given by equation (8) (or (15)). One can absorb all the numerical coefficients in the 
functions y and z and assume that F is given by 

OD 

F(y ,z )=J [  0 cos(pz)A(-pZ-y)dp (23) 
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where J is some number. Note that F(y, z )  as given in equation (23), is a special, 
everywhere-regular solution of the differential equation 

Now F is not completely determined since the functions y and z appearing in it are 
arbitrary functions of the coordinates. We can therefore choose any everywhere- 
regular solution of equation (24). We shall use the simple solution 

k ( y ,  t) =A(-y - w ~ / ~ )  e x p ( i ~ ’ / ~ z ) .  (25) 

Under these circumstances, and assuming that all the tensors &,(x),  . . . , d,,(x) which 
appear in equation (22) are real, the metric takes the form 

g , h ,  U )  = g(0)wy(X)+w- l  c o s ( w e > ~ , , ( x ) ~ ( - ~ ’ / ~ ( ~  + 1)) 

+ w - ~ ’ ~  ~in(w~)b,,(x)A’(-w’’~(~ + 1)) +O(w-’) (26) 

where U is a smooth function of the coordinates. From now on we shall use this 
simplified form. 

Up till now we treated the case in which the phase function * ( x , p )  is given by 
equation (15). When T(x, p )  is of the form (7) we go through the same steps and find 
that the WKB form of the metric for this type of conjugate point is 

where U is a smooth non-negative function of the space-time coordinates. This WKB 
form of the metric corresponds to the form (3) of the vector potential in geometrical 
optics near a focal point. 

3. Tbe first-order WKB approximate solution 

With the metric given by equations (26) or (27) one can construct the first-order WKB 
approximate solution to Einstein’s equations near a conjugate point. In particular we 
shall deal with the case in which the conjugate point is along null geodesics orthogonal 
at their starting point to a fixed space-like two-surface. The results in the other case will 
be given at the end of this section. 

Einstein’s equations involve not only the metric but also its derivatives and the 
inverse metric. We shall assume that the inverse metric can be written in a form similar 
to the metric itself, that is 

where g(i)wv,  i = 0, 1 , 2  are determined from the algebraic equations 

g p U g u A  = 8:. (29) 
The derivatives of the metric which is given in equation (26) can be written as follows: 
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where the functions $:, M‘ and m;, are defined as 

4; = [e *$(U + 1)3/2],A = $5 (3 1) 

(32) 1 /2  m c y  = a,, i (U + 1) b,, 
M‘ = ~ [ s i n ( w e ) A ( - ~ * / ~ ( u  + l ) ) * ~ - ” ~ ( u  + l)-”’ cos(w8>A’(-~.’ /~(~ + l))]. (33) 

(Note that we are interested only in a neighbourhood of the conjugate point, that is, in 
those values of U which are close to zero. Hence U + 1 never vanishes.) 

We then calculate the Ricci tensor R,, and equate to zero those terms of R,, which 
go to infinity as w goes to infinity. The result is the following pair of equations: 

g ‘ o ) A p ( * ~ * ~ m ~ w + * ~ * ~ m ~ , - * ~ $ ~ m ~ ~ - * ~ * ~ m ~ u )  = 0 (34) 

g ‘ o ’ A p ( * ~ $ ~ m ~ w + * ~ * ~ m ~ ~ - $ ~ $ ~ m ~ ~ -  +i~~,m;,)  = 0. (35) 

These are the basic equations of the first-order WKB approximate solutions of 
Einstein’s equations. This type of equation is well known from the study of discon- 
tinuities of derivatives of the metric tensor (Stellmacher 1938, Treder 1962). These 
equations will also appear in calculations of the WKB approximate solutions to 
Einstein’s equations away from conjugate points (Choquet-Bruhat 1969, MacCallum 
and Taub 1973) if one uses two null hypersurfaces instead of one which is usually done. 

The general solution of an equation like (34) is known (Stellmacher 1938). Here we 
need the general solution of the pair (34)-(35) and it is found as follows: if 

g(o)”y$L*: # 0 and g‘o’N”$-$- ,, # 0 (36) 

m i w  = $:aw +$:a,; m:, = $;bp + $;b, (37) 

then the general solution of (34)-(35) is 

where a ,  and b” are arbitrary vectors. This solution is of no physical interest because 
using the coordinate transformation 

x ,  + x *  +U-’ s in(~e)A(-o’ /~(u  + 1)) V p  +u-’l3 cos(~e)A‘(-w’’~(u + 1)) W ,  (38) 
where 

V ,  = $ ( a ,  +b’);  wc” = +(U + 1)-1/*(a’L - b, )  (39) 

(one raises and lowers indices with the metric g(o),w) we get a metric in which both m i ,  
and m;, do not appear at all. Similarly, if one of the vectors I,!I= or 4; is not a null vector 
with respect to the metric g(o),w then either m i ,  or m;, are devoid of any physical 
meaning. Here we shall be interested in the case in which both mz, and m;, cannot be 
gauged away by a coordinate transformation. Therefore we must have 

do),” $,*” + + = g‘O)””$;$; = 0. (40) 
Now we construct a null tetrad with respect to the metric g(o),y by defining two complex 
valued null vectors m, and fi, such that we shall have, in addition to (40), 

(4 1) 

It is easy to verify by expanding the tensors m:, in the vectors of the null tetrad we have 
just defined and substituting this expansion in (34)-(35), that the general solution of the 

+;mu = g(0)c’ym,mw = 0; g(o) ,Y$;my = gco),v g(O)Pwm e, = -1. 
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equations (34)-(35) is 

where H a n d  I are complex valued functions and a,,  b" are arbitrary vectors. We have 
already seen that the vectors a' and b' do not have any physical meaning and can 
therefore be put equal to zero without any loss of generality. Consequently we shall 
assume that the solution of the pair (34)-(35) is 

- - 
m i , =  Hm,m,+Hm,fi,; m i ,  = Impmu + Ifi,fi,,. (43) 

To summarize, equation (43) gives a,, and (U + 1)"*bpv in terms of H and I, and the 
functions 8 and U which appear in the metric (cf equation (26)) are related by equations 
(31) and (40). This is as much as we can say in general. By imposing additional 
conditions we can completely determine all the functions appearing in the metric. 
Before we analyse the geometrical meaning of the scalars H and I (and consequently of 
the tensors m:,) let us write down the results in the case where the phase function 
* ( x ,  p )  is given by equation (7). (Recall that the results of this section are based on the 
assumption that q ( x , p )  is of the form (8) (or (15).) The basic equations remain 
(34)-(35) with the solutions (43) except that here 

and 

m:, = a,, * rb,, (45) 

where r (x)  is the smooth function satisfying r2  = U (cf equation (27)). Observe that in 
this case the tensors mzv will not have a direct geometrical meaning connected to the 
null hypersurfaces t,b* = constant, because a conjugate point of the type in which the 
phase function * ( x , p )  takes, in some coordinates, the form (7)  is necessarily a 
conjugate point along time-like geodesics. It is known that the properties of time-like 
geodesics are not determined, in general, by those of the null geodesics. Thus, for 
example, one cannot expect the tensors m:, given in equation (45) to be directly linked 
with the intensity of gravitational radiation at a conjugate point. 

4. The geometrical meaning of the solution 

In order to find out the geometrical meaning of the functions H and I let us construct a 
null tetrad with respect to the metric g,,. From the form of the inverse metric (cf 
equations (28) and (29)) and equation (43) it follows that 

(46) g,v*+*+ = g,v*-*- = 0 
, U  

that is, the vectors 4; and 4; are null also with respect to the metric g,,, As the two 
other null (with respect to the metric g,,) complex conjugate vectors M ,  and we 
choose 

(47) MW = m ,  + iw- ' (Q  + ~ - ' / ~ R ) e w  
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where the functions Q and R are defined by 

Q co~(oe )A( -w-*’~(~  + l ) ) (J+@ 
(48) 

R = $ ~ i n ( d ) A ’ ( - w ~ ’ ~ ( u  + l))(u + l)-’”(f-@. 

For convenrence we denote 

(49) + A  - - 1  - np=(((/ ( ( /A)  ( ( / N .  

The degenerate case ((/+*$A = 0 is especially simple and therefore we shall not discuss it 
here. With the functions defined in equation (33) we find that 

((/:;,= ( ( / :~Y-Wmt , ( ( ( /+A(( / i )  + O(w-’) (50) 

n,;, = n,~v-4Wm;u+O(w-1) (51) 

and 

where a semi-colon (vertical rule) denotes a covariant derivation with respect to the 
metric g,,(g(o,,y). Now we use the NP spin coefficients (see Newman and Penrose 1962) 
formed from the null tetrad (((/it n,, mw,-6i,) (with the metric g(o),u) as well as those 
formed from the null tetrad (((/;, n,, M,, M,) (with the metric g,,). As usual, we denote 
by g(g0)  the shear, with respect to the metric g,v(g~o~,,,), of the null geodesic 
congruence having the tangent vector ((/: and by A and A. the same quantities except 
that the tangent to the geodesics is nF.  From equation (50) we obtain 

0- = ((/;;,MfiM‘ = q)-+M-f( ( ( /+*(( / ; )+  O(w-’) 

A =-n,;J?@‘ =Ao+;MfH+O(w-’). (53) 

(52) 

and from equation (5 1) we obtain 

Thus we see that the functions H and I are essentially characterized by the shear of null 
hypersurfaces. The tensors m:, (or equivalently the tensors a,, and bpu) are deter- 
mined (up to a phase function which has no physical meaning and which can always be 
made equal to zero by rotating the vectors m, and M,) by a single scalar which is (HI2 
for mi, and (I(’ for m:,. It follows that the tensors a,, and b,, which appear in the 
metric are essentially determined by the squared moduli of the shear of the two null 
hypersurfaces ((/* =constant (cf equation (31)) defined at the conjugate point. We say 
essentially because we have already remarked that not all of the functions involved 
U, 8, a,,, b,, are completely fixed by the general first-order WKB approximate solution 
(they are, however, determined if initial conditions are imposed) and because the 
expression for IT or A, as given in equation (52) or (53), contains, besides I and H, 
oscillatory functions and the Airy function. 

Let us now discuss the applications of these results to the question of gravitational 
energy flux at a conjugate point. As pointed out by Pirani (1957), Bondi eta1 (1962) 
and Penrose (1967) the only physically meaningful local concept related to gravitational 
energy is the gravitational energy flux. Since we have well defined null hypersurfaces it 
is clear that these will be the gravitational wavefronts. Thus we have a well defined 
direction of the energy flux and we need to know the magnitude of the flux which is 
evidently a scalar. 

To avoid misunderstanding we would like to emphasize that our solution is valid 
only at some neighbourhood of the conjugate point. We have shown (cf Manor 1977) 
that it is impossible to construct a global non-singular phase function P(x, p ) ,  hence one 



774 Y Manor 

is unable to construct a global WKB approximation. Consequently, the regular null 
hypersurfaces ljl* = constant are only locally defined. The physical determination and 
the geometrical description of the null hypersurfaces t,b* = constant is parallel to the 
case in which there are no conjugate points. We observe (by using the asymptotic form 
of the Airy function) that I&* is, in fact, the phase of the rapidly oscillating metric given 
by equation (26) much the same as 4 is the phase of the oscillating metric given by 
equation (4). Then we apply the analysis of Pirani (1957), Penrose (1967) and Isaacson 
(1968). 

In the beginning of this section we showed that there is only one type of scalar which 
can be formed from the first-order WKB approximate solution and this is bilinear 
combinations of the shear of the null hypersurfaces ljl* = constant. Hence we are led to 
the conclusion that the shear should represent the first-order WKB approximation to 
the gravitational energy flux. Notice that here we are dealing with conjugate points. A 
similar conclusion away from conjugate points was reached by Penrose (1967). Also we 
find it necessary to use the shear of both null hypersurfaces and not just one of them. 

In order to find out the concrete expression for the approximate gravitational energy 
flux at a conjugate point we need some results from differential geometry. Suppose 
there is some observer with unit velocity field U’. Let S be the space-like hypersurface 
formed by all geodesics orthogonal to U” and let N be a null hypersurface. The 
intersection of S with N is a space-like two-surface. Draw, in this two-surface a small 
circle D and observe the generators of N which are orthogonal to D. It is known (Sachs 
1961) that if one measures the projection of the null geodesics orthogonal to D on the 
intersection of N with some other space-like hypersurface S’ formed from the geodesics 
orthogonal to some unit velocity field U‘”, one will find that the circle D has been 
expanded, rotated and sheared. Hence we see that one of the ways to study the effects 
of curvature is to examine the distortion of ‘shadows’ cast by null geodesics. 

To express this idea quantitatively let us consider a point in a Riemannian two- 
surface Sz and denote by T, the tangent plane to S2 at x.  In T, we draw a small circle C, 
of radius r. We study the geodesics emanating from x whose tangent vectors at x belong 
to C,. On each such geodesic we choose the point in which the affine parameter (which is 
zero at x )  reaches the value 1. This set of points describes a closed contour C in the 
two-surface SZ. (We assume that S2 is connected, that is, consists of ‘one piece’.) It can 
be shown that the length of C minus the length of C, (that is, length (C) - 2 m )  is a 
measure of the curvature of the two-surface Sz. More precisely, as r goes to zero we 
have 

(54) 
r r  
3 

length (C) =2m--Ga(S2)+0(r3)  

where G, is the Gaussian curvature of S2 at the point x and length (C) is calculated with 
respect to the Riemannian metric of Sz, Now we consider the case in which S2 is 
imbedded in space-time. In particular, we shall be interested in the case in which there 
are two null vectors I” and n” and S2 is the intersection of all the geodesics orthogonal 

tions equation (54) generalizes to the following equation: 
to 2-112 (1 P +n”) with the null hypersurface whose tangent is n”. Under these condi- 

length (C) = 2.rrr-3-’m3G,(S2)+2. 3 - ’ 7 ~ r ~ ( p ~ - - ~ A ) ~ ) + o ( r ~ )  (55 )  

where p and A are the coefficients of expansion and shear of the null geodesics having 
the tangent vector n”. Since we would like to find the contribution of the rapidly 
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oscillating part of the metric we have to calculate length (C) with the metric g,, and to 
subtract the contribution from the metric g(of,v. Thus 

length (C) - length(o, (C) 
= -3-'.rrr3(G,(Sz)-G,,o~(S2))-3-'2.rrr3(~A(2-(AO)2) 

+ O ( ~ ~ ) + O ( ~ - ~ )  (56) 

where length,,, (C) and G,(0)(SZ) are the length of C and the Gaussian curvature of S2 
calculated using the metric g(o),v. From the Gauss-Bonnet theorem (see Kobayashi and 
Nomizu 1969) it follows that 

area (9) length (C) - area(o,(9) length(o) (C) 

= J length (C) dS2 - J length(o) (C) d,,,S, 
9 a 

where 9 is the region limited by C and dSz (d(o,S2) is the surface element of S2 with 
respect to the projection of the metric g,, (g(o),,) on S2 .  

Now the term proportional to r3  on the right-hand side of equation (57) is nothing 
but Bondi's mass loss (Bondi eta1 1962). Their calculation is restricted to infinity in the 
asymptotically flat region of space-time but if one considers only the first-order WKB 
approximation to it, then the result is valid everywhere (away from singularities and 
conjugate points; cf Penrose 1967). 

Thus we arrive at the conclusion that one of the ways to measure the gravitational 
energy flux of rapidly oscillating fields at conjugate or non-conjugate points is to 
measure the change of length of a small closed contour (recall that all our results are 
valid only in the limit r + 0) placed perpendicularly to the gravitational rays (Le., the null 
geodesics). 

Note that at a conjugate point, A in equation (57) is given by equation (53) which 
contains the Airy function. 

As far as we were able to see a direct measurement of the gravitational energy flux in 
the way proposed here is beyond the reach of the present day experimental precision. 
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